O.P.Code:23EC0401 **R23** H.T.No. SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech.II Year I Semester Regular Examinations February-2025 SIGNALS, SYSTEMS AND STOCHASTIC PROCESSES (Electroniocs & Communications Engineering) Time: 3 Hours Max. Marks: 70 **PART-A** (Answer all the Questions $10 \times 2 = 20$ Marks) a Test whether the signal y(t) = 3x(t) + 2 is linear or non linear. **CO1 L4** 2M**b** Define convolution and correlation. CO₁ L1 2M c Explain the time shifting property of Fourier transform. **CO3** L1 2M**d** Find the laplace transform impulse signal. CO₂ L_2 2Me Define LTI system. CO₁ Li 2Mf Define Energy and Power spectral densities. **C02** L1 2Mg Define wide sense stationary random processes. **CO6** L12Mh Define the cross correlation function between two random processes X(t) **CO6** L12M& Y(t). Give the statement of Wiener-Khinchin relation **CO6 L2** 2MDefine spectrum Band width and RMS bandwidth. CO₂ L1 2M**PART-B** (Answer all Five Units $5 \times 10 = 50$ Marks) UNIT-I Sketch the following signals for given x(t). 2 CO₁ L3 10 M x(t-4)(i) (iii)2x(2-t)x(t)

a State and Prove Linearity and Time reversal properties of Fourier series.

b Derive how exponential Fourier series is obtained from trigonometric

OR

	~	2 di ve inove emponentari i carrer series is commente i com ingonomicari			OIVE.
		series.			
		Series.			
		UNIT-II			
4	a	Explain modulation property of Fourier transform.	CO ₂	L2	5M
-					
	b	Find the Fourier transform of the function e ^{at} u(-t).	CO ₂	L3	5M
		OB			
		OR			
5	9	State initial and final value theorem of Laplace Transform.	CO ₂	L1	5M
		•	002		DIVE
	b	Find the initial and final values of	CO ₂	L1	5M
		$X(s) = \underline{2s+5}$			
		$s^2 + 5s + 6$			
		UNIT-III			

6 Let $x(t) = e^{-at}u(t)$, where a > 0, be the input to an LTI system with CO4 L3 10M impulse response h(t) = u(t). Calculate the response of the system.

CO₂

L1

L3

5M

5M

- 4	״.	n
- 4	- 10	к

		OK .			
7	a	Explain the ideal filter characteristics.	CO ₃	L2	5M
	b	Explain causality and physical reliability of a system and hence give Paley-Wiener criterion.	CO4	L2	5M
		UNIT-IV			
8		Explain the following	CO ₆	L2	10M
		i. Stationarity			
		ii. Ergodicity			
		iii. Statistical independence with respect to random			
		processes.			
		OR			
9		Briefly explain the distribution and density functions in the context of	CO6	L2	10M
		stationary and independent random processes.			
		UNIT-V			
10	a	Check the following power spectral density functions are valid or not i) $\cos 8 (\omega)/(2 + \omega^4)$ ii) $e^{-(\omega^{-1})^2}$	CO2	L6	5M
	b	Derive the relation between input PSD and output PSD of an LTI system.	CO ₂	L3	5M
		OR			
11	a	Analyze the cross correlation function corresponding to the cross power spectrum SXY(ω)= 6 /[(9+ ω ²)(3+ $j\omega$) ²].	CO2	L4	5M
	b	Explain briefly about cross power density spectrum. *** END ***	CO2	L2	5M